
4. EMPREENDIMENTOS SIMILARES NO MUNDO E NO BRASIL

4.1. EMPREENDIMENTOS SIMILARES NO MUNDO

Novas tecnologias de processamento estão sendo aplicadas em correntes de refinarias para remoção de impurezas. Entre os maiores líderes mundiais licenciadores de tecnologias estão as empresas UOP, Axens, PETROBRAS, ABB Lummus, Haldor Topsoe e H-B/TPA, que contam com mais de 300 projetos em desenvolvimento no mundo todo.

A PETROBRAS é um licenciador de tecnologia na área de refino, e conforme indicado em revista especializada, de circulação mundial, a *Hydrocarbon Processing – HPI Construction Boxscore – Industrie Development* (junho de 2004), está na lista dos maiores licenciadores em tecnologia de refino – incluindo hidrorrefino e hidrogênio.

O Gráfico nº 09 mostra os líderes nos processos de refino de petróleo.

Fonte: *Hydrocarbon Processing – HPI Construction Boxscore – Industrie Development* (junho de 2004). Gráfico nº 09 - Licenciadores Líderes de Novas Tecnologias de Refino de Petróleo.

Globalmente os combustíveis estão se tornando mais limpos, isto é, com menor quantidade de impurezas como os compostos de enxofre e nitrogênio, em função das crescentes exigências ambientais, obrigando muitos dos atuais projetos de refinarias a buscar novas e rígidas especificações dos combustíveis.

Uma intensa atividade está sendo desenvolvida no mundo, por grandes grupos, nos quais se inclui a PETROBRAS, na aplicação de novas tecnologias para remover, separar ou reagir vários compostos contendo enxofre, visando a obtenção de gasolinas, misturas de diesel e outras correntes mais leves do petróleo, mais limpos. Muitos desses novos processos incluem o uso de catalisadores de tipo avançado para obter ultra baixos níveis de enxofre.

Especificações para o enxofre no diesel apontam para 15 ppm nos Estados Unidos chegando a 10 ppm em muitos países da Europa Ocidental. Muitas nações estão passando a adotar esses níveis de enxofre em seus programas de combustíveis. No Brasil, as novas especificações apontam para o teor de enxofre nos combustíveis de 50 ppm para gasolina e 50 ppm para o diesel metropolitano.

Além da remoção do enxofre, muitos avanços vêm ocorrendo na tecnologia de obtenção de produtos leves e mais limpos, partindo de óleos pesados. A queda na demanda por produtos pesados está exigindo esforços agressivos para transformar produtos pesados em produtos leves, devido à alta demanda desses últimos. Tais

esforços envolvem programas de aumento de capacidade ou implantação de novas Unidades de Hidrotratamento ou Hidrocraqueamento. Conta-se, atualmente, no mundo, dezenas de projetos com este escopo.

A adição de mais octanagem ao *pool* de gasolina é outra das prioridades que está sendo considerada. Com a remoção do enxofre das gasolinas, há uma perda de octanagem e assim há muitos projetos novos e novas tecnologias estão sendo desenvolvidas para aumentar a octanagem das correntes da gasolina.

O importante é destacar que as novas unidades de refino e tecnologia que estão sendo adotadas visam alcançar as novas especificações dos combustíveis.

Consequentemente, ao redor do mundo, as refinarias estão desenvolvendo e implantando projetos e mudanças em seus esquemas de produção para modernização e atendimento às exigências de produção e oferta de produtos mais leves, como mostram as Tabelas nº 12 a 15.

Tabela nº 12 – Empreendimentos com Processos Similares de Hidrotratamento para Diesel.

Companhia	Local	Capacidade de Refino	
Conoco Phillips	Califórnia USA	32.000 bpd	5.088 m ³ /dia
Marathon	Louisiana USA	87.000 bpd	$13.834 \text{ m}^3/\text{dia}$
Williams Refining	Tennessee USA	42.000 bpd	$6.678 \text{ m}^3/\text{dia}$
Premcor	Texas USA	53.000 bpd	8.427 m ³ /dia
Syncrude	Canadá	85.000 bpd	$13.516 \text{ m}^3/\text{dia}$
Empresa Nacional	Chile	44.000 bpd	6.996 m ³ /dia
Petróleo	Cnile	44.000 bpa	0.990 III /ula
Petroleos Mexicanos	México	72.000 bpd	11.449 m³/dia
OMV Aktiengellsschaft	Áustria	38.000 bpd	$6.042 \text{ m}^3/\text{dia}$
PDVSA	Venezuela	40.000 bpd	6.360 m ³ /dia
Esso France	França	48.000 bpd	7.632 m ³ /dia
AGIP	Itália	50.000 bpd	$7.950 \text{ m}^3/\text{dia}$
Nansei Sekiya KK	Japão	9.000 bpd	1.431 m ³ /dia

Obs:. bpd – barris por dia. Fonte:. *Hydrocarbon Processing – HPI Construction Boxscore – Industrie Development* (junho de 2004).

Tabela nº 13 – Empreendimentos com Processos Similares de Hidrodessulfurização de Gasolina.

Companhia	Local	Capacidade de Refino	
Marathon Ashland Petro	Illinois USA	38.000 bpd	6.042 m ³ /dia
Equiva Serv	Texas USA	41.000 bpd	6.519 m ³ /dia
Philiips Petroleum Co	Washington USA	20.000 bpd	3.180 m ³ /dia
Petro Canadá	Canadá	30.000 bpd	4.770 m ³ /dia
Adm Nac Combustibles	Uruguai	18.000 bpd	2.862 m ³ /dia
TotalFinaElf	Bélgica	57.500 bpd	9.143 m ³ /dia
Raffineria de Milazzo	Itália	28.500 bpd	4.532 m ³ /dia
Permnefteorggsyntez	Rússia	9.500 bpd	1.511 m ³ /dia
Essar Oil Ltd	Índia	30.000 bpd	4.770 m ³ /dia
Nan Ya Plastics Corp	Taiwan	4.000 bpd	636 m³/dia
AGIP	Itália	50.000 bpd	7.950 m ³ /dia

Obs:. bpd – barris por dia. Fonte:. *Hydrocarbon Processing – HPI Construction Boxscore – Industrie Development* (junho de 2004).

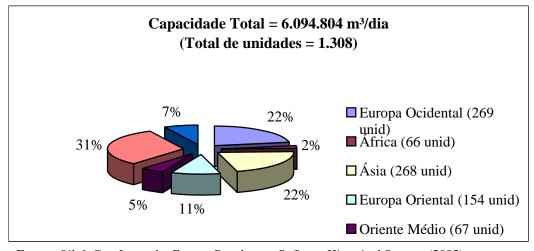
Tabela nº 14 – Empreendimentos com Processos Similares de Coqueamento Retardado.

Companhia	Local	Capacidade de Refino	
Farmland Ind Inc	Kansas USA	24.000 bpd	$3.816 \text{ m}^3/\text{dia}$
Sun Coke Company	Ohio USA	10.000 bpd	1.590 m ³ /dia
Canad Nat Resouces	Canadá	124.000 bpd	19.717 m ³ /dia
Empresa Nacional Petróleo	Chile	20.000 bpd	$3.180 \text{ m}^3/\text{dia}$
Petroleos Mexicanos	México	30.000 bpd	4.770 m ³ /dia
Petrolera Ameriven	Venezuela	62.000 bpd	9.858 m ³ /dia
Repsol – YPF	Espanha	25.000 bpd	3.975 m ³ /dia
Rosneft	Rússia	17.000 bpd	2.703 m ³ /dia
Yangzi Petrochem	China	28.500 bpd	$4.532 \text{ m}^3/\text{dia}$
Indian Oil Corp	Índia	45.000 bpd	7.155 m ³ /dia
Alexandria Mineral Oil	Egito	8.000 bpd	1.272 m ³ /dia

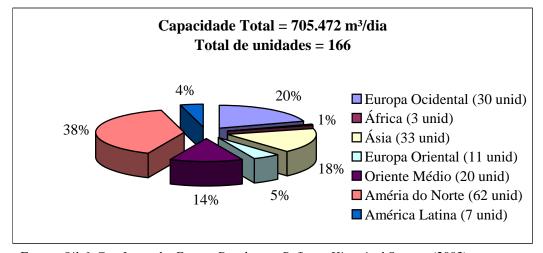
Obs:. bpd – barris por dia (10.000 barris = 1.590 m³). Fonte:. *Hydrocarbon Processing – HPI Construction Boxscore – Industrie Development* (junho de 2004).

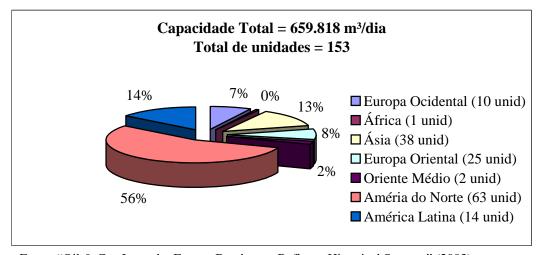
Tabela nº 15 – Empreendimentos com Processos Similares de Recuperação de Enxofre.

Companhia	Local	Capacidade de Recuperação
Shell OPUSA	Califórnia USA	90 t/dia
Murphy Oil USA Inc	Louisiana USA	125 t/dia
Marathon Ashland Petro	Michigan USA	60 t/dia
Valero Energy	Oklahoma USA	130 t/dia
Shell Chemical Canada	Canadá	116 t/dia
Refineria Concon	Chile	35 t/dia
Petroleos Mexicanos	México	120 t/dia
PDVSA	Venezuela	100 t/dia
TotalFinaElf	França	400 t/dia
SpA	Itália	120 t/dia
Repsol-YPF	Espanha	49 t/dia
Guangzhou Petrochem	China	60 t/dia


Fonte:. Hydrocaron Processing – HPI Construction Boxscore – Industrie Development (junho de 2004).

Destaca-se que atualmente todas as refinarias em operação têm uma ou mais unidades de Recuperação de Enxofre em operação. Como exemplo cita-se a REPLAN onde estão em operação duas Unidades Recuperadoras de Enxofre (URE), com capacidade de 106 t/d de enxofre cada.


Para uma idéia global sobre a capacidade de produção e número de unidades instaladas, apresenta-se os Gráficos n^{os} 10 a 12.



Fonte:. *Oil & Gas Journal – Energy Database – Refinery Historical Surveys* (2003). Gráfico nº 10 – Distribuição de Unidades de Hidrotratamento no Mundo.

Fonte:. *Oil & Gas Journal – Energy Database – Refinery Historical Surveys* (2003). Gráfico nº 11 – Distribuição de Unidades de Hidrocraqueamento no Mundo.

Fonte: "Oil & Gas Journal – Energy Database – Refinery Historical Surveys" (2003). Gráfico nº 12 – Distribuição de Unidades de Coqueamento Retardado no Mundo.

4.1.1. Projetos e Construções no Mundo, na Área do Refino de Petróleo, Comparados aos Processos/Tecnologias Selecionadas para a Modernização da REPLAN

A Tabela nº 16 apresenta a relação de projetos e construções no mundo de similares ao projeto de modernização da REPLAN.

Tabela nº 16 – Projetos e Construções no Mundo.

Continente	Processos Iguais à REPLAN	Outros Processos do Refino	Processos Auxiliares Iguais da REPLAN
América do Norte	130	117	40
América Latina	48	98	31
Europa Ocidental	127	130	34
Europa Oriental	91	130	23
Ásia	129	202	38
África	39	55	6
Oriente Médio	78	98	32
Total	642	830	204

Fonte: Hydrocarbon Processing – HPI Construction Boxscore Update (junho 2004).

Em complemento à Tabela nº 16, verifica-se, em nível mundial, a intensa atividade centrada na aplicação de novas tecnologias que removem da gasolina e do óleo diesel, os compostos que contêm enxofre. Tais esforços também envolvem novas unidades que processam produtos pesados, como é o caso do coqueamento e do hidrocraqueamento. Os projetos e construções em andamento no Brasil não estão indicados na tabela acima, possibilitando uma visão sem a influência brasileira.

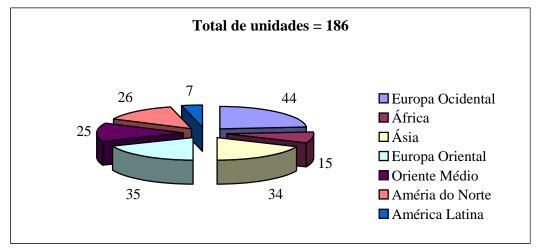
A maior homogeneidade na distribuição dos projetos e construções entre os principais continentes, em relação à distribuição das atuais unidades instaladas, mostra a busca dos refinadores, independentemente do local, em alcançar as especificações mais apertadas para os combustíveis.

Também é importante conhecer o número de sistemas de controle ambiental que estão sendo instalados devido à necessidade de adequação às exigências de combustíveis limpos, como a remoção de enxofre. Dentre a grande quantidade de sistemas de controle ambiental que estão sendo instalados no mundo destacam-se as Unidades de Recuperação de Enxofre, acompanhando a grande quantidade de instalação de novas Unidades de Hidrotratamento, mostrando que as exigências crescentes da sociedade para melhores condições de qualidade do ar, e a legislação restritiva, estão sendo acompanhados pelos refinadores.

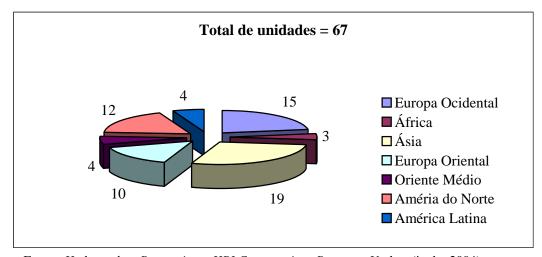
Outros Sistemas como *Tail Gas* (adotados para aumentar ainda mais a eficiência das Unidades de Recuperação de Enxofre) e o *Degasser* (utilizados para uma adicional segurança de processo no manuseio de enxofre) têm o objetivo de incrementar alto desempenho às unidades de recuperação de enxofre.

Os sistemas de tratamento de águas ácidas, cuja tendência global é de sistemas para reuso de água tratada estão fortemente aplicados a este projeto.

Desta forma, constata-se que a solução adotada pela PETROBRAS/REPLAN é bastante parecida às soluções que os grandes refinadores do mundo, principalmente da Europa e Estados Unidos, estão adotando.

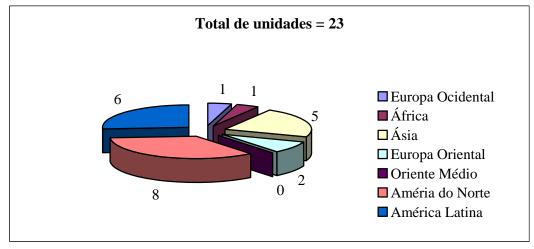

Todas as tecnologias são amplamente utilizadas em refinarias de muitos países, principalmente nos que já adotam um esquema de produção mais adequado às exigências de combustíveis limpos.

Quanto aos sistemas de controle ambiental, a solução da REPLAN também está alinhada com as tendências mundiais, inclusive até com maior intensidade, visto ter tecnologias como *Tail Gas* e *Degasser*, que estavam praticamente restritas aos Estados Unidos.

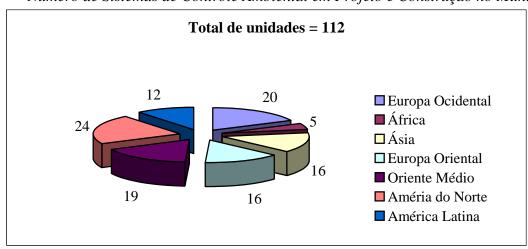

O sistema de reuso de água retificada tratada também é outro ponto a se destacar.

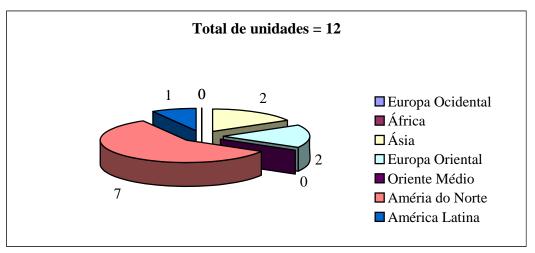
Para se ter uma idéia sobre o número de unidades em projeto e/ou construção pelo mundo e o número de sistemas de controle ambiental em projeto e/ou construção no mundo, apresenta-se os gráficos de nº 13 a 18.

Número de Novas Unidades em Projeto e Construção no Mundial



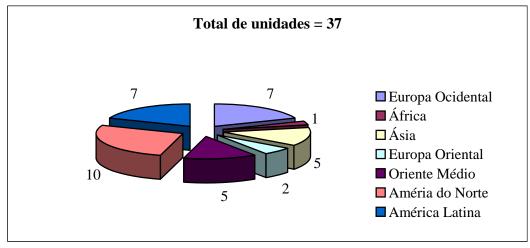
Fonte:. *Hydrocarbon Processing – HPI Constructions Boxscore Update* (junho 2004). Gráfico nº 13 – Unidades de Hidrotratamento em Construção no Mundo.


Fonte:. *Hydrocarbon Processing – HPI Constructions Boxscore Update* (junho 2004). Gráfico nº 14 – Unidades de Geração de Hidrogênio em Construção no Mundo.



Fonte:. *Hydrocarbon Processing – HPI Constructions Boxscore Update* (junho 2004). Gráfico nº 15 – Unidades de Coqueamento Retardado em Construção no Mundo.

Número de Sistemas de Controle Ambiental em Projeto e Construção no Mundo



Fonte:. *Hydrocarbon Processing – HPI Constructions Boxscore Update* (junho 2004). Gráfico nº 16 – Unidades de Recuperação de Enxofre em Construção no Mundo.

Fonte:. *Hydrocarbon Processing – HPI Constructions Boxscore Update* (junho 2004). Gráfico nº 17 – Unidades *Tail Gas* em Construção no Mundo.

Fonte:. *Hydrocarbon Processing – HPI Constructions Boxscore Update* (junho 2004). Gráfico nº 18 – Unidades de Tratamento de Águas em Construção no Mundo.

4.2. EMPREENDIMENTOS SIMILARES EM OUTROS LUGARES NO BRASIL

Em boa parte dos países desenvolvidos e em desenvolvimento, está sendo exigida, por questões ambientais, a produção de combustíveis limpos. Este fato obriga as refinarias de petróleo, a buscar novas tecnologias que permitam atender rígidas especificações para combustíveis.

Conforme mostrado no item anterior, diversos paises adotam níveis reduzidos de enxofre em seus programas de combustíveis. Especificações com limitações de enxofre na gasolina de até 10 ppm devem ser exigidas nos Estados Unidos, Japão e Comunidade Européia até o final desta década.

O Brasil não é exceção nesta tendência mundial. Os investimentos da PETROBRAS em empreendimentos para melhoria da qualidade da gasolina e do diesel nacional já são uma realidade nas diversas unidades de refino de petróleo.

4.2.1. CARTEIRA DE GASOLINA

Empreendimentos similares à carteira de gasolina da REPLAN podem ser vistos em outras refinarias do sistema PETROBRAS, já em operação ou em processo de licenciamento como o deste Estudo de Impacto Ambiental.

Pode-se citar as seguintes refinarias:

- REDUC Refinaria Duque de Caxias no Estado do Rio de Janeiro;
- RPBC Refinaria Presidente Bernardes no Estado de São Paulo:
- REPAR Refinaria Presidente Getúlio Vargas no Estado do Paraná;
- REGAP Refinaria Gabriel Passos no Estado de Minas Gerais;
- RLAM Refinaria Landulpho Alves no Estado da Bahia; e
- REFAP Refinaria Alberto Pasqualini no Estado do Rio Grande do Sul.

4.2.2. CARTEIRA DE DIESEL

Pode-se citar diversos empreendimentos similares à Carteira de Diesel, em operação atualmente no Brasil, destacando-se as seguintes:

- Duas Unidades na REPLAN (Refinaria de Paulínia);
- Três Unidades na REGAP (Refinaria Gabriel Passos MG);
- Duas na REVAP (Refinaria Henrique Laje SP);
- Duas na RPBC (Refinaria Presidente Bernardes Cubatão SP);
- Duas na REDUC (Refinaria Duque de Caxias RJ); e
- Uma na REPAR (Refinaria Presidente Getúlio Vargas PR).

4.2.3. UNIDADES DE DESTILAÇÃO ATMOSFÉRICA E A VÁCUO

Todas as Refinarias da Petrobras no Brasil o possuem estas unidades:

- RECAP Refinaria de Capuava Mauá/SP;
- REPLAN Refinaria de Paulínia Paulínia/SP;
- RPBC Refinaria Presidente Bernardes Cubatão/SP;
- REVAP Refinaria Henrique Lage São José dos Campos/SP;
- REPAR Refinaria Presidente Getúlio Vargas Paraná;
- REFAP Refinaria Alberto Pasqualini Rio Grande do Sul;
- REDUC Refinaria Duque de Caxias Rio de Janeiro;
- REMAN Refinaria Issac Sabbá Manaus/AM:
- LUBNOR Lubrificantes e Derivados de Petróleo do Nordeste Fortaleza/CE;
- RLAM Refinaria Landulpho Alves Bahia; e
- REGAP Refinaria Gabriel Passos Betim/MG.

4.2.4. UNIDADES DE COQUEAMENTO RETARDADO

Para as Unidades de Coqueamento Retardado também podem ser encontradas em operação nas seguintes refinarias do Brasil:

- Duas unidades na REPLAN (Refinaria de Paulínia);
- Duas na RPBC (Refinaria Presidente Bernardes Cubatão SP);
- Uma na REGAP (Refinaria Gabriel Passos MG);
- Uma na REDUC (Refinaria Duque de Caxias RJ); e
- Uma na REFAP (Refinaria Alberto Pasquallini RS).